Fish products account for about 16 percent of the human diet worldwide, as of 2017. The counting action is a significant component in growing and producing these products. Growers must count the fish accurately, to do so technological solutions are needed. Two computer vision systems to automatically count crustacean larvae grown in industrial ponds were developed. The first system included an iPhone 11 camera with 3024X4032 resolution which acquired images from an industrial pond in indoor conditions. Two experiments were performed with this system, the first one included 200 images acquired in one day on growth stages 9,10 with an iPhone 11 camera on specific illumination condition. In the second experiment, a larvae industrial pond was photographed for 11 days with two devices an iPhone 11 and a SONY DSCHX90V cameras. With the first device (iPhone 11) two illumination conditions were tested. In each condition, 110 images were acquired. That system resulted in an accuracy of 88.4 percent image detection. The second system included a DSLR Nikon D510 camera with a 2000X2000 resolution with which seven experiments were performed outside the industrial pond. Images were acquired on day 1 of larvae growing stage resulting in the acquisition of a total of 700 images. That system resulted in an accuracy of 86 percent for a density of 50. An algorithm that automatically counts the number of larvae was developed for both cases based on the YOLOv5 CNN model. In addition, in this study, a larvae growth function was developed. Daily, several larvae were taken manually from the industrial pond and analyzed under a microscope. Once the growth stage was determined, images of the larva were acquired. Each larva's length was measured manually from the images. The most suitable model was the Gompertz model with a goodness of fit index of R squared of 0.983.


翻译:截至2017年,全球人类饮食中约有16%的鱼类产品占了人类饮食量的16%。 计数行动是生长和生产这些产品的一个重要部分。 种植者必须准确计算鱼的数量, 以便找到技术解决方案。 开发了两套计算机视觉系统, 以自动计算工业池塘中生长的甲壳动物幼虫数量。 第一个系统包括一台iPhone 11相机, 3024X4032分辨率, 从室内的工业池中获取图像。 第一个系统进行了两次实验, 包括一天在生长阶段9、 10 和iPhone 11摄像头中获取的200张图像。 第二个系统包括一台DSLRen D510摄像头, 具体照明条件为iPhone 11。 在第二个实验中, 一个幼虫工业池, 用两台iPhone 11 和 SONYSCHX90V摄像头自动计数 。 在第一个设备(iPhone 11) 和 SONYLO 图像的直径上进行了七天的实验。, 每台都获得了一个直径的直径的直径, 一个直径图像的直径, 。 。 。 。 在一个直径的直径的直径的直径系统下, 的直径的直径的直径的直径的直径的直径的直径的直径的直径的直径, 。 的直径的直径的直径的直径, 。 。 直径的直径的直径的直径的直径的直径的影像的影像的影像的影像的影像的影像的影像的影像的影像在的影像的影像的影像的影像的直径, 。 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
专知会员服务
124+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月20日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
专知会员服务
124+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员