The generation of stylish Chinese fonts is an important problem involved in many applications. Most of existing generation methods are based on the deep generative models, particularly, the generative adversarial networks (GAN) based models. However, these deep generative models may suffer from the mode collapse issue, which significantly degrades the diversity and quality of generated results. In this paper, we introduce a one-bit stroke encoding to capture the key mode information of Chinese characters and then incorporate it into CycleGAN, a popular deep generative model for Chinese font generation. As a result we propose an efficient method called StrokeGAN, mainly motivated by the observation that the stroke encoding contains amount of mode information of Chinese characters. In order to reconstruct the one-bit stroke encoding of the associated generated characters, we introduce a stroke-encoding reconstruction loss imposed on the discriminator. Equipped with such one-bit stroke encoding and stroke-encoding reconstruction loss, the mode collapse issue of CycleGAN can be significantly alleviated, with an improved preservation of strokes and diversity of generated characters. The effectiveness of StrokeGAN is demonstrated by a series of generation tasks over nine datasets with different fonts. The numerical results demonstrate that StrokeGAN generally outperforms the state-of-the-art methods in terms of content and recognition accuracies, as well as certain stroke error, and also generates more realistic characters.
翻译:中国时尚字体的生成是许多应用中的一个重要问题。 大多数现有生成方法都基于深重基因模型,特别是基因对抗网络(GAN)基于模型。然而,这些深重基因模型可能因模式崩溃问题而受到影响,这大大降低了生成结果的多样性和质量。在本文中,我们引入了单位编码,以捕捉中国字符的关键模式信息,然后将其纳入CyopleGAN,这是中国字体生成的一个广受欢迎的深层次基因模型。因此,我们提出了一种称为StrokeGAN的有效方法,主要基于中风编码包含中国字符模式信息数量的观察。为了重建相关字符的单位中风编码,我们引入了对制成结果的重塑损失。我们用这种一位编码和中速编码来捕捉中国字符的关键模式信息,然后将其纳入CyopleGAN的模式问题可以大大缓解,从而更好地保存中风和生成的字符的多样性。 StrokeGAN的效能主要体现在一系列生成字符包含中国字符模式的信息量。为了重建相关字符的单位字符的单位编码,我们引入了一种中位编码的重的重的重的编码,我们以不同的字体形式展示了一定的顺序,从而展示了某种图表,从而展示了某些的顺序,并展示了一定的顺序,从而展示了某种的顺序,并展示了某种图表,显示了了某种图表的顺序,显示了了一种不同的格式。