We present evidence that many common convolutional neural networks (CNNs) trained for face verification learn functions that are nearly equivalent under rotation. More specifically, we demonstrate that one face verification model's embeddings (i.e. last-layer activations) can be compared directly to another model's embeddings after only a rotation or linear transformation, with little performance penalty. This finding is demonstrated using IJB-C 1:1 verification across the combinations of ten modern off-the-shelf CNN-based face verification models which vary in training dataset, CNN architecture, method of angular loss calculation, or some combination of the 3. These networks achieve a mean true accept rate of 0.96 at a false accept rate of 0.01. When instead evaluating embeddings generated from two CNNs, where one CNN's embeddings are mapped with a linear transformation, the mean true accept rate drops to 0.95 using the same verification paradigm. Restricting these linear maps to only perform rotation produces a mean true accept rate of 0.91. These mappings' existence suggests that a common representation is learned by models despite variation in training or structure. We discuss the broad implications a result like this has, including an example regarding face template security.
翻译:我们提供了证据,证明许多接受过面对面核查培训的普通革命神经网络(CNNs)在轮换期间学习了几乎等效的功能。更具体地说,我们证明,可以将一个面对面的核查模型的嵌入率(即最后一层激活)直接比作另一个模型的嵌入率(仅经过轮换或线性转换后),而很少执行处罚。这一结论用IJB-C1:1在十个现代现成的CNN面部核查模型组合中的IJB-C1:1验证来证明,这些模型在培训数据集、CNN架构、角值损失计算方法或3的组合方面各不相同。这些网络在0.01的虚假接受率下实现了0.96的平均值真实接受率。在评价两个CNN的嵌入率时,一个CNN的嵌入率是线性转换,而一个CNN的嵌入率则使用同样的验证模式,将平均真实接受率降至0.95。将这些线性地图限制于只进行轮换,从而产生0.91的平均值真实接受率。这些绘图表明,尽管在培训或结构上存在差异,但这些模型还是学习共同的表示。我们讨论了安全模式等广泛的影响。