The rapid progression of Generative Adversarial Networks (GANs) has raised a concern of their misuse for malicious purposes, especially in creating fake face images. Although many proposed methods succeed in detecting GAN-based synthetic images, they are still limited by the need for large quantities of the training fake image dataset and challenges for the detector's generalizability to unknown facial images. In this paper, we propose a new approach that explores the asynchronous frequency spectra of color channels, which is simple but effective for training both unsupervised and supervised learning models to distinguish GAN-based synthetic images. We further investigate the transferability of a training model that learns from our suggested features in one source domain and validates on another target domains with prior knowledge of the features' distribution. Our experimental results show that the discrepancy of spectra in the frequency domain is a practical artifact to effectively detect various types of GAN-based generated images.


翻译:虽然许多拟议方法成功地检测了基于GAN的合成图像,但是由于需要大量培训假图像数据集,以及探测器对未知面部图像的通用性挑战,这些拟议方法仍然有限。在本文件中,我们提出了探索颜色频道无同步频率频谱的新办法,这种方法简单,但对于培训未经监督和监督的学习模型以区分基于GAN的合成图像十分有效。我们进一步调查了从一个源域的推荐特征中学习的培训模型的可转让性,并在先前了解这些特征分布的另一个目标领域验证了该培训模型。我们的实验结果表明,频域的光谱差异是有效检测基于GAN生成的各类图像的实用手工艺。

0
下载
关闭预览

相关内容

生成对抗网络GAN的发展与最新应用
专知会员服务
126+阅读 · 2020年8月13日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
997篇-历史最全生成对抗网络(GAN)论文串烧
深度学习与NLP
16+阅读 · 2018年6月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Slimmable Generative Adversarial Networks
Arxiv
3+阅读 · 2020年12月10日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关VIP内容
生成对抗网络GAN的发展与最新应用
专知会员服务
126+阅读 · 2020年8月13日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
997篇-历史最全生成对抗网络(GAN)论文串烧
深度学习与NLP
16+阅读 · 2018年6月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员