Swarm learning (SL) is an emerging promising decentralized machine learning paradigm and has achieved high performance in clinical applications. SL solves the problem of a central structure in federated learning by combining edge computing and blockchain-based peer-to-peer network. While there are promising results in the assumption of the independent and identically distributed (IID) data across participants, SL suffers from performance degradation as the degree of the non-IID data increases. To address this problem, we propose a generative augmentation framework in swarm learning called SL-GAN, which augments the non-IID data by generating the synthetic data from participants. SL-GAN trains generators and discriminators locally, and periodically aggregation via a randomly elected coordinator in SL network. Under the standard assumptions, we theoretically prove the convergence of SL-GAN using stochastic approximations. Experimental results demonstrate that SL-GAN outperforms state-of-art methods on three real world clinical datasets including Tuberculosis, Leukemia, COVID-19.
翻译:Swarm Learning(SL)是一个有希望的分散式机器学习模式,在临床应用方面取得了很高的成绩。SL通过结合边缘计算和基于链链的同侪对同侪网络,解决了联合学习中央结构的问题。虽然在假设独立和相同分布的参与者(IID)数据方面有良好的结果,但随着非IID数据水平的增加,SL的性能退化。为了解决这个问题,我们提议在群温学习中建立一个称为SL-GAN的基因增强框架,通过生成参与者的合成数据来增加非IID数据。SL-GAN在当地培训生成者和歧视者,并通过随机选出的 SL网络协调员定期集成。根据标准假设,我们理论上证明SL-GAN使用Stochacirectives的近似值是SL-GAN的趋同。实验结果表明,SL-GAN在三个真实的世界临床数据集,包括肺结核、Leukemia、COVID-19上超越了最新的方法。