Medical health care centers are envisioned as a promising paradigm to handle the massive volume of data of COVID-19 patients using artificial intelligence (AI). Traditionally, AI techniques often require centralized data collection and training the model in a single organization, which is most common weakness due to the privacy and security of raw data communication. To solve this challenging task, we propose a blockchain-based federated learning framework that provides collaborative data training solutions by coordinating multiple hospitals to train and share encrypted federated models without leakage of data privacy. The blockchain ledger technology provides the decentralization of federated learning model without any central server. The proposed homomorphic encryption scheme encrypts and decrypts the gradients of model to preserve the privacy. More precisely, the proposed framework: i) train the local model by a novel capsule network to segmentation and classify COVID-19 images, ii) then use the homomorphic encryption scheme to secure the local model that encrypts and decrypts the gradients, and finally the model is shared over a decentralized platform through proposed blockchain-based federated learning algorithm. The integration of blockchain and federated learning leads to a new paradigm for medical image data sharing in the decentralized network. The conducted experimental resultsdemonstrate the performance of the proposed scheme.


翻译:传统上,人工智能技术通常要求在一个组织内集中收集数据并培训模型,这是最常见的弱点,因为原始数据通信的隐私和安全性。为了解决这一具有挑战性的任务,我们提议一个基于链式联结的学习框架,通过协调多家医院,提供合作数据培训解决方案,以提供协作数据培训解决方案,办法是协调多家医院,在不泄露数据隐私的情况下培训和分享加密的联邦模式。 链式分类账技术提供将联合学习模式分散到没有中央服务器的分散式平台上。拟议的同质加密方案加密并解密模型梯度以维护隐私。更确切地说,拟议框架是:i)用新式胶囊网络培训当地模型,以分割和分类COVID-19图像,二)然后使用同质加密计划,确保本地模型加密和解密梯度,最后,该模型通过拟议的基于链式联锁的医学学习算法,在一个分散式平台上共享。将分层链式加密和节化模型整合成型模型,以共享新的标准式模型。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员