We observe an unknown regression function of $d$ variables $f(\boldsymbol{t})$, $\boldsymbol{t} \in[0,1]^d$, in the Gaussian white noise model of intensity $\varepsilon>0$. We assume that the function $f$ is regular and that it is a sum of $k$-variate functions, where $k$ varies from $1$ to $s$ ($1\leq s\leq d$). These functions are unknown to us and only few of them are nonzero. In this article, we address the problem of identifying the nonzero components of $f$ in the case when $d=d_\varepsilon\to \infty$ as $\varepsilon\to 0$ and $s$ is either fixed or $s=s_\varepsilon\to \infty$, $s=o(d)$ as $\varepsilon\to \infty$. This may be viewed as a variable selection problem. We derive the conditions when exact variable selection in the model at hand is possible and provide a selection procedure that achieves this type of selection. The procedure is adaptive to a degree of model sparsity described by the sparsity parameter $\beta\in(0,1)$. We also derive conditions that make the exact variable selection impossible. Our results augment previous work in this area.
翻译:暂无翻译