Scoliosis is a three-dimensional deformity of the spine, most often diagnosed in childhood. It affects 2-3% of the population, which is approximately seven million people in North America. Currently, the reference standard for assessing scoliosis is based on the manual assignment of Cobb angles at the site of the curvature center. This manual process is time consuming and unreliable as it is affected by inter- and intra-observer variance. To overcome these inaccuracies, machine learning (ML) methods can be used to automate the Cobb angle measurement process. This paper proposes to address the Cobb angle measurement task using YOLACT, an instance segmentation model. The proposed method first segments the vertebrae in an X-Ray image using YOLACT, then it tracks the important landmarks using the minimum bounding box approach. Lastly, the extracted landmarks are used to calculate the corresponding Cobb angles. The model achieved a Symmetric Mean Absolute Percentage Error (SMAPE) score of 10.76%, demonstrating the reliability of this process in both vertebra localization and Cobb angle measurement.
翻译:骨质疏松是脊椎的三维畸形, 通常在童年时被诊断出来。 它影响到人口的2- 3%, 北美大约700万人。 目前, 用于评估骨质疏松的参考标准基于在曲线中心所在地手工分配科布角度。 这个人工过程耗时且不可靠, 因为它受到观察者之间和内部差异的影响。 要克服这些不准确性, 机器学习( ML) 方法可用于自动化 Cobb 角度测量过程。 本文建议使用一个实例分割模型, 来应对 Cobb 角度测量任务。 拟议的方法首先使用YOLACT, 来跟踪使用 X- Ray 图像中的脊椎部分, 然后使用最小的捆绑框方法跟踪重要标志。 最后, 提取的标志用于计算相应的科布角度。 模型取得了10.76%的 Symitima 绝对百分比错误( SMAPE) 的评分, 以证明这个过程的可靠性。