A novel functional additive model is proposed which is uniquely modified and constrained to model nonlinear interactions between a treatment indicator and a potentially large number of functional and/or scalar pretreatment covariates. The primary motivation for this approach is to optimize individualized treatment rules based on data from a randomized clinical trial. We generalize functional additive regression models by incorporating treatment-specific components into additive effect components. A structural constraint is imposed on the treatment-specific components in order to provide a class of additive models with main effects and interaction effects that are orthogonal to each other. If primary interest is in the interaction between treatment and the covariates, as is generally the case when optimizing individualized treatment rules, we can thereby circumvent the need to estimate the main effects of the covariates, obviating the need to specify their form and thus avoiding the issue of model misspecification. The methods are illustrated with data from a depression clinical trial with electroencephalogram functional data as patients' pretreatment covariates.


翻译:提出了一种新的功能添加模型,该模型的独特修改和局限在于模拟治疗指标与可能为数众多的功能和(或)天平预处理功能和(或)天平预处理共同变量之间的非线性互动。这一方法的主要动机是优化基于随机临床试验数据的个人化治疗规则。我们通过将特定治疗成分纳入添加效应组件,对功能性添加回归模型进行普及。对特定治疗成分施加结构性限制,以便提供一类具有主要效应和相互作用效应的添加模型,这些效应和互动效应相互交织。如果主要兴趣在于治疗与共变体之间的相互作用,如在优化个别治疗规则时一般情况下,我们可以避免估计共变体的主要影响,从而避免需要指定其形式,从而避免模型错误区分问题。这些方法用由抑郁临床试验数据用电子脑图功能数据作为病人预处理共变体的数据加以说明。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【UMD开放书】机器学习课程书册,19章227页pdf,带你学习ML
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月18日
Arxiv
0+阅读 · 2021年3月17日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员