This paper provides estimation and inference methods for a large number of heterogeneous treatment effects in the presence of an even larger number of controls and unobserved unit heterogeneity. In our main example, the vector of heterogeneous treatments is generated by interacting the base treatment variable with a subset of controls. We first estimate the unit-specific expectation functions of the outcome and each treatment interaction conditional on controls and take the residuals. Second, we report the Lasso (L1-regularized least squares) estimate of the heterogeneous treatment effect parameter, regressing the outcome residual on the vector of treatment ones. We debias the Lasso estimator to conduct simultaneous inference on the target parameter by Gaussian bootstrap. We account for the unobserved unit heterogeneity by projecting it onto the time-invariant covariates, following the correlated random effects approach of Mundlak (1978) and Chamberlain (1982). We demonstrate our method by estimating price elasticities of groceries based on scanner data.
翻译:本文提供大量不同处理效果的估计和推论方法,以存在数量更多的控制和未观测到的单位异质性。在我们的主要例子中,不同处理的矢量是通过基处理变量与一组控件相互作用产生的。我们首先估计结果的单位特有预期功能,以及以控件为条件的每种处理相互作用。第二,我们报告对异质处理效应参数的Lasso(L1常规最低方)估计,并减少治疗对象矢量上的结果残留。我们降低Lasso估计器对Gaussian靴杆目标参数同时进行推论。我们按照Mundlak(1978年)和Camberlain(1982年)的随机效应方法,通过根据扫描仪数据估算杂货的价格弹性来说明我们的方法。