The (weighted) average treatment effect is commonly used to quantify the main effect of a binary exposure on an outcome. Extensions to continuous exposures, however, either quantify the effects of interventions that are rarely relevant (e.g., applying the same exposure level uniformly in the population), or consider shift interventions that are rarely intended, raising the question how large a shift to consider. Average derivative effects (ADEs) instead express the effect of an infinitesimal shift in each subject's exposure level, making inference less prone to extrapolation. ADEs, however, are rarely considered in practice because their estimation usually requires estimation of (a) the conditional density of exposure given covariates, and (b) the derivative of (a) w.r.t. exposure. Here, we introduce a class of estimands which can be inferred without requiring estimates of (a) and (b), but which reduce to ADEs when the exposure obeys a specific distribution determined by the choice of estimand in the class. We moreover show that when the exposure does not obey this distribution, our estimand represents an ADE w.r.t. an `intervention' exposure distribution. We identify the `optimal' estimand in our class and propose debiased machine learning estimators, by deriving influence functions under the nonparametric model.
翻译:通常使用(加权)平均处理效应来量化二进制接触对结果的主要影响。不过,持续接触的延伸通常用于量化很少相关干预的影响(例如,在人口中统一适用相同的接触水平),或考虑很少打算的转移干预,从而产生一个问题。平均衍生效应(ADE)表示每个对象接触水平的极小变化的影响,使推断较少易被推断出。但是,在实践中很少考虑ADE,因为其估计通常要求估计(a) 附带变量的接触的有条件密度,以及(b) (a) w.r.t. 相同的接触的衍生物。这里,我们引入了一种可不要求估计(a)和(b) 即可推断的估算值,但当暴露符合由估计和类别中选择确定的具体分配模式时,将降低为ADE。我们还表明,当接触不符合这一分布时,我们的估计值和估计值代表着“我们估计值”的排序中“预测值”的估算值,以及机头“我们学习“我们”的判断值分配和机头“我们”之下的评估“我们”的“分析”之下的评估。