Background: Code reviewing is an essential part of software development to ensure software quality. However, the abundance of review tasks and the intensity of the workload for reviewers negatively impact the quality of the reviews. The short review text is often unactionable, which needs further interaction between the reviewer and the developer. The problem becomes more critical in dynamic teams and in the case of new team members who are less familiar with their reviewers and perspectives. Aims: We are proposing the Example Driven Review Explanation (EDRE) method to facilitate the code review process by adding additional explanations through examples. EDRE recommends similar code reviews as examples to further explain a review and help a developer to understand the received reviews with less communication overhead. Method: Through an empirical study in an industrial setting and by analyzing 3,722 code reviews across three open-source projects, we compared five methods of data retrieval, text classification, and text recommendation. Results: EDRE using TF-IDF word embedding along with an SVM classifier can provide practical examples for each code review with 92% F-score and 90% Accuracy. Conclusions: The example-based explanation is an established method for assisting experts in explaining decisions. EDRE was developed based on the same philosophy and can accurately provide a set of context-specific examples to facilitate the code review process in software teams.


翻译:代码审查是软件开发的一个基本部分,以确保软件质量。然而,大量审评任务和审评员工作量的强度对审评质量产生消极影响。简短的审评文本往往不具有可诉性,需要审评员和开发商进一步互动。问题在动态团队和对审评员和观点不那么熟悉的新的团队成员中变得更为关键。目标:我们正在通过实例添加更多解释,为代码审评进程提供便利,提出 " 驱动示例审查解释 " 方法。EDRE建议类似的代码审查作为实例,进一步解释审评,帮助开发商理解收到的审评,减少通信间接费用。方法:通过在工业环境中进行实证研究,分析三个开放源项目中的3 722项代码审查,我们比较了数据检索、文本分类和文本建议的五种方法。结果:EDRE使用TF-IDF词嵌入S SVM分类器,为每项代码审评提供实际例子,92%的F-C-Corder和90%的准确性。结论:以实例为基础的解释是用于协助专家作出具体决定的既定哲学方法。

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
69+阅读 · 2022年6月30日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员