Non-Gaussian state-space models arise in several applications, and within this framework the binary time series setting provides a relevant example. However, unlike for Gaussian state-space models - where filtering, predictive and smoothing distributions are available in closed form - binary state-space models require approximations or sequential Monte Carlo strategies for inference and prediction. This is due to the apparent absence of conjugacy between the Gaussian states and the likelihood induced by the observation equation for the binary data. In this article we prove that the filtering, predictive and smoothing distributions in dynamic probit models with Gaussian state variables are, in fact, available and belong to a class of unified skew-normals (SUN) whose parameters can be updated recursively in time via analytical expressions. Also the key functionals of these distributions are, in principle, available, but their calculation requires the evaluation of multivariate Gaussian cumulative distribution functions. Leveraging SUN properties, we address this issue via novel Monte Carlo methods based on independent samples from the smoothing distribution, that can easily be adapted to the filtering and predictive case, thus improving state-of-the-art approximate and sequential Monte Carlo inference in small-to-moderate dimensional studies. Novel sequential Monte Carlo procedures that exploit the SUN properties are also developed to deal with online inference in high dimensions. Performance gains over competitors are outlined in a financial application.
翻译:一些应用中出现了非高加索州-空间模型,在此框架内,二进制时间序列设置提供了一个相关实例。然而,与高山州-空间模型不同的是,在高山州-空间模型中,过滤、预测和平滑分布以封闭形式提供,二进制州-空间模型需要近似或连续的蒙特卡洛战略,以进行推断和预测。这是因为高山州之间显然缺乏共性,而二进制数据的观察方程式也可能导致二进制数据的累积分布。在本篇文章中,我们证明,与高山州-空间变量的动态标本模型中的过滤、预测和平滑分布事实上是可用的,而且属于一个统一的Skeew-正常分布类别(SUN)的类别,其参数可以通过分析表达方式在时间上反复更新。此外,这些分布的关键功能在原则上是存在的,但是它们的计算要求评估多变制高斯州累积分布功能。我们通过基于从平滑分布中独立样本的新的蒙特卡洛方法来解决这个问题,因此,可以轻易地将连续递增后期-在Skarodeal-rodeal rodeal rodeal-rodeal-real-real-real-regraphertrade-real-retracle acretravelistracal detracle acal acal acal restradeal rodud rogradu roal-laction-laction-trade roal rotraction-traction-traction-tradal-tradal-tradal-trad rotrade rocal rocistrade rod rod rocal rocal rocistrad rod rocal-tradal-trad rocal rocal-tracal-tracal-tracal rocal rocal rocal rocal rocal rocal-ladal rocal rocal-lad-lad ro ro ro-lad-in ro-lad ro-s ro-s-s-lacal-tracal-lacal-lad ro-lad rocal rocal-