Stochastic regret bounds for online algorithms are usually derived from an "online to batch" conversion. Inverting the reasoning, we start our analyze by a "batch to online" conversion that applies in any Stochastic Online Convex Optimization problem under stochastic exp-concavity condition. We obtain fast rate stochastic regret bounds with high probability for non-convex loss functions. Based on this approach, we provide prediction and probabilistic forecasting methods for non-stationary unbounded time series.
翻译:在线算法的Stochatic 遗憾界限通常来自“ 在线到批次” 转换。 换句话说, 我们用“ 批次到在线” 转换法来分析我们的分析, 在任何Stochatic Online Convex Apptimination 问题中, 都适用这种“ 在线连接优化” 转换法。 我们获得快速速率的随机遗憾界限, 非 convex 损失函数的概率很高。 基于这个方法, 我们为非静止且无约束的时间序列提供预测和概率预测方法 。