This paper introduces a general framework for estimating variance components in the linear mixed models via general unbiased estimating equations, which include some well-used estimators such as the restricted maximum likelihood estimator. We derive the asymptotic covariance matrices and second-order biases under general estimating equations without assuming the normality of the underlying distributions and identify a class of second-order unbiased estimators of variance components. It is also shown that the asymptotic covariance matrices and second-order biases do not depend on whether the regression coefficients are estimated by the generalized or ordinary least squares methods. We carry out numerical studies to check the performance of the proposed method based on typical linear mixed models.
翻译:本文件提出一个总框架,用以通过一般的无偏倚估计方程式估计线性混合模型中的差异组成部分,其中包括一些使用良好的估计值,如限制最大可能性估计值。我们在一般估计方程式下得出无症状共变矩阵和二阶偏差,但不假定基础分布的正常性,并找出一组第二阶无偏差估计方程式的差异组成部分。还表明,无症状共变矩阵和二阶偏差并不取决于回归系数是按一般或普通最低方程式方法估算的。我们进行了数字研究,以检查基于典型线性混合模型的拟议方法的性能。