Locally repairable codes(LRCs) play important roles in distributed storage systems(DSS). LRCs with small locality have their own advantages since fewer available symbols are needed in the recovery of erased symbols. In this paper, we prove an upper bound on the dimension of LRCs with minimum distance $d\geq 7$. An upper bound on the length of almost optimal LRCs with $d=7$, $r=2$ at $q^2+q+3$ is proved. Then based on the $t$-spread structure, we give an algorithm to construct almost optimal LRCs with $d=7$, $r=2$ and length $n\geq 3\lceil\frac{\sqrt{2}q}{3}\rceil$ when $q\geq 4$, whose dimension attains the aforementioned upper bound.
翻译:局部可修理代码(LRCs)在分布式储存系统(DSS)中起着重要作用。 地方小的LRCs有其自身的优势, 因为恢复被擦除的符号需要的可用符号较少。 在本文中, 我们证明LRCs的尺寸有上限, 最小距离为$d\geq 7美元。 几乎最佳的LRCs的长度的上限为$=7美元, $=2美元=2美元, 单位为$q2+q+3美元。 然后, 根据美元分布式结构, 我们给出一种算法, 使用$d=7美元, $r=2美元和长度为$n\geq 3\lceil\frac\sqrt{2}q\ 3 ⁇ rcelelel$, 当$q\geq 4美元, 其尺寸达到上述上限时, 我们给出了几乎最佳的LRCsercs, $=7美元, $r=2美元和长度为$n\geq 3\q 4美元。