Grubbs and Weaver (JASA 42 (1947) 224--241) suggest a minimum-variance unbiased estimator for the population standard deviation of a normal random variable, where a random sample is drawn and a weighted sum of the ranges of subsamples is calculated. The optimal choice involves using as many subsamples of size eight as possible. They verified their results numerically for samples of size up to 100, and conjectured that their "rule of eights" is valid for all sample sizes. Here we examine the analogous problem where the underlying distribution is exponential and find that a "rule of fours" yields optimality and prove the result rigorously.
翻译:Grubbs 和 Weaver (JASA 42 (1947) 224-241) 提出了正常随机变量人口标准偏差最小不变的不偏差估计值, 随机抽取样本并计算子样本范围的加权总和。 最佳选择包括尽可能多地使用八号大小的子样本。 他们用数字方式核实了大小不超过100的样本的结果, 并推断其“ 8 值” 对所有样本大小都有效。 我们在这里研究下方分布指数的类似问题, 并发现“ 四号规则” 产生最佳效果, 并严格地证明结果 。