Existing benchmarks for evaluating long video understanding falls short on multiple aspects, either lacking in scale or quality of annotations. These limitations arise from the difficulty in collecting dense annotations for long videos (e.g. actions, dialogues, etc.), which are often obtained by manually labeling many frames per second. In this work, we introduce an automated Annotation and Video Stream Alignment Pipeline (abbreviated ASAP). We demonstrate the generality of ASAP by aligning unlabeled videos of four different sports (Cricket, Football, Basketball, and American Football) with their corresponding dense annotations (i.e. commentary) freely available on the web. Our human studies indicate that ASAP can align videos and annotations with high fidelity, precision, and speed. We then leverage ASAP scalability to create LCric, a large-scale long video understanding benchmark, with over 1000 hours of densely annotated long Cricket videos (with an average sample length of 50 mins) collected at virtually zero annotation cost. We benchmark and analyze state-of-the-art video understanding models on LCric through a large set of compositional multi-choice and regression queries. We establish a human baseline that indicates significant room for new research to explore. The dataset along with the code for ASAP and baselines can be accessed here: https://asap-benchmark.github.io/.


翻译:评估长期视频理解的现有基准在多个方面都存在不足,要么缺乏规模或说明质量,这些限制源于难以收集长视频(例如行动、对话等)的密集说明,这些说明往往是通过手工为每秒多框架贴上手动标签获得的。在这项工作中,我们引入了自动批注和视频流匹配管道(ASAP),通过将收集的四种不同运动(板球、足球、篮球和美国足球)的无标签视频与相应的密集说明(即评论)统一起来,在网络上可以免费查阅。我们的人类研究表明,ASAP能够将视频和说明与高度忠诚、精确和速度一致。然后,我们利用ASAP的缩放性来创建LCric,这是一个大型的长视频理解基准,有超过1 000小时的密集长的Cricket视频(平均样本长度为50分钟),以近乎零度的注解成本来显示。我们通过大量一系列的多层次的图像访问来测量和分析LCricrical的高级视频理解模型模型。我们在这里可以确定一个重大的多层次的基线,用于检索。

0
下载
关闭预览

相关内容

ASAP:Application-Specific Systems, Architectures, and Processors。 Explanation:特定于应用程序的系统、体系结构和处理器。 Publisher: IEEE。 SIT:http://dblp.uni-trier.de/db/conf/asap
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月9日
Arxiv
0+阅读 · 2023年3月9日
Arxiv
12+阅读 · 2022年4月30日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员