Annual ranking of higher educational institutions (HEIs) is a global phenomenon and have significant impact on higher education landscape. Most of the HEIs pay close attention to ranking results and look forward to improving their ranks. However, maintaining a good rank and ascending in the rankings is a difficult task because it requires considerable resources, efforts and performance improvement plan. In this work, firstly, we show how exploratory data analysis (EDA) using correlation heatmaps and box plots can aid in understanding the broad trends in the ranking data. Subsequently, we present a novel idea of classifying the rankings data using Decision Tree (DT) based algorithms and retrieve decision paths for rank improvement using data visualization techniques. Using Laplace correction to the probability estimate, we quantify the amount of certainty attached with different decision paths obtained from interpretable DT models. The proposed methodology can aid Universities and HEIs to quantitatively assess the scope of improvement, adumbrate a fine-grained long-term action plan and prepare a suitable road-map.
翻译:高等教育院校的年排名是一个全球现象,对高等教育领域有重大影响。高等教育院校大多密切关注排名结果,期待提高他们的排名。然而,在排名中保持良好的排名和升位是一项艰巨的任务,因为它需要大量的资源、努力和绩效改进计划。在这项工作中,首先,我们展示了使用相关热图和盒式地块的探索性数据分析(EDA)如何有助于了解排名数据的广泛趋势。随后,我们提出了一个新想法,即利用基于决策树的算法对排名数据进行分类,并利用数据可视化技术检索改进排名的决策路径。我们利用拉普尔校正来估计概率,我们量化从可解释的DT模型中获得的不同决策路径所附带的确定性数量。拟议方法可以帮助大学和高等教育学院定量评估改进范围,制定精细的长期行动计划,并编写适当的路线图。