We propose the \emph{Cyclic cOordinate Dual avEraging with extRapolation (CODER)} method for generalized variational inequality problems. Such problems are fairly general and include composite convex minimization and min-max optimization as special cases. CODER is the first cyclic block coordinate method whose convergence rate is independent of the number of blocks (under a suitable Lipschitz definition), which fills the significant gap between cyclic coordinate methods and randomized ones that remained open for many years. Moreover, CODER provides the first theoretical guarantee for cyclic coordinate methods in solving generalized variational inequality problems under only monotonicity and Lipschitz continuity assumptions. To remove the dependence on the number of blocks, the analysis of CODER is based on a novel Lipschitz condition with respect to a Mahalanobis norm rather than the commonly used coordinate-wise Lipschitz condition; to be applicable to general variational inequalities, CODER leverages an extrapolation strategy inspired by the recent developments in primal-dual methods. Our theoretical results are complemented by numerical experiments, which demonstrate competitive performance of CODER compared to other coordinate methods.


翻译:我们提议对普遍差异性不平等问题采用跨周期双向横向重叠法(CODER),这些问题相当普遍,包括复合锥体最小化和微轴优化,作为特殊情况。CODER是第一种循环组合协调法,其趋同率独立于块数(根据适当的Lipschitz定义),以填补周期协调法与多年来一直开放的随机协调法之间的巨大差距。此外,CODER为仅在单调和Lipschitz连续性假设下解决普遍差异性不平等问题的周期协调法提供了第一种理论保证。为了消除对区数的依赖,CODER的分析基于新的Lipschitz条件,即马哈拉诺比斯规范,而不是通常使用的协调利普施茨条件;为了适用于一般差异性不平等,CoDER利用了受最近原始方法发展启发的外推法。我们的理论结果得到数字实验的补充,这些实验表明CODER与其他协调方法相比具有竞争性的绩效。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
2+阅读 · 2021年6月30日
Arxiv
0+阅读 · 2021年6月30日
Arxiv
8+阅读 · 2019年2月15日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员