People ask questions that are far richer, more informative, and more creative than current AI systems. We propose a neuro-symbolic framework for modeling human question asking, which represents questions as formal programs and generates programs with an encoder-decoder based deep neural network. From extensive experiments using an information-search game, we show that our method can predict which questions humans are likely to ask in unconstrained settings. We also propose a novel grammar-based question generation framework trained with reinforcement learning, which is able to generate creative questions without supervised human data.


翻译:人们问的问题比目前的人工智能系统更丰富、更丰富、更丰富、更有创造性。我们建议为模拟人类问题提出一个神经-分子框架,这个框架代表了正式程序的问题,并生成了基于深层神经网络的编码器-解码器程序。从使用信息搜索游戏的广泛实验中,我们展示了我们的方法可以预测在不受约束的环境中,人类可能会问哪些问题。我们还提出了一个新的基于语法的问题生成框架,经过强化学习培训,在没有人类监管数据的情况下能够产生创造性问题。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
深度神经网络压缩和加速相关最全资源分享
深度学习与NLP
3+阅读 · 2019年7月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
深度学习NLP相关资源大列表
机器学习研究会
3+阅读 · 2017年9月17日
Arxiv
1+阅读 · 2021年6月25日
Using Scene Graph Context to Improve Image Generation
Arxiv
6+阅读 · 2018年4月21日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关资讯
深度神经网络压缩和加速相关最全资源分享
深度学习与NLP
3+阅读 · 2019年7月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
深度学习NLP相关资源大列表
机器学习研究会
3+阅读 · 2017年9月17日
相关论文
Top
微信扫码咨询专知VIP会员