We introduce a notion of majorization flow, and demonstrate it to be a powerful tool for deriving simple and universal proofs of continuity bounds for entropic functions relevant in information theory. In particular, for the case of the alpha-R\'enyi entropy, whose connections to thermodynamics are discussed in this article, majorization flow yields a Lipschitz continuity bound for the case alpha > 1, thus resolving an open problem and providing a substantial improvement over previously known bounds.
翻译:我们引入了主控流的概念,并表明它是一个强有力的工具,可以用来为信息理论中相关的电子函数的连续性界限得出简单和普遍的证据,特别是就alpha-R\'enyi entropy而言,主要流与热力学的联系在本篇文章中讨论,主要流产生一个连接Alpha > 1的Lipschitz 连续性,从而解决一个尚未解决的问题,并大大改进了先前已知的界限。