We aim to detect and identify multiple objects using multiple cameras and computer vision for disaster response drones. The major challenges are taming detection errors, resolving ID switching and fragmentation, adapting to multi-scale features and multiple views with global camera motion. Two simple approaches are proposed to solve these issues. One is a fast multi-camera system that added a tracklet association, and the other is incorporating a high-performance detector and tracker to resolve restrictions. (...) The accuracy of our first approach (85.71%) is slightly improved compared to our baseline, FairMOT (85.44%) in the validation dataset. In the final results calculated based on L2-norm error, the baseline was 48.1, while the proposed model combination was 34.9, which is a great reduction of error by a margin of 27.4%. In the second approach, although DeepSORT only processes a quarter of all frames due to hardware and time limitations, our model with DeepSORT (42.9%) outperforms FairMOT (71.4%) in terms of recall. Both of our models ranked second and third place in the `AI Grand Challenge' organized by the Korean Ministry of Science and ICT in 2020 and 2021, respectively. The source codes are publicly available at these URLs (github.com/mlvlab/drone_ai_challenge, github.com/mlvlab/Drone_Task1, github.com/mlvlab/Rony2_task3, github.com/mlvlab/Drone_task4).


翻译:我们的目标是利用多摄像头和计算机愿景探测和识别多重物体,用于应对灾害的无人机。主要的挑战在于测试探测错误,解决身份转换和分散,适应多尺度特点和以全球摄影机运动的多重观点。提出了两个简单的办法来解决这些问题。一个是快速的多摄像系统,增加了音轨联系,另一个是采用高性能探测器和跟踪器来解决限制问题。 (......)我们的第一个方法(85.71%)的准确性比验证数据集中的FairMOT(85.44%)的基线稍有改进。在根据L2-诺姆错误计算的最后结果中,基线为48.1,而拟议的模型组合为34.9,大大减少了27.4%的差幅。在第二种办法中,虽然DeepSORT只处理由于硬件和时间限制而导致的所有框架的四分之一,但我们与DeepSOlaRT(42.9%)的模型比FairMOT(71.4%)略高于(71.4%)。我们的两个模型在“AIGrand Rib_comta”中位居第二和第三位第二位,由韩国科学部和信通技术部门/2020年/2020年的SLLI/2020年的SLLLLA 和20。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Towards PAC Multi-Object Detection and Tracking
Arxiv
0+阅读 · 2022年4月15日
Arxiv
17+阅读 · 2021年3月29日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员