This paper investigates the effectiveness of pre-training for few-shot intent classification. While existing paradigms commonly further pre-train language models such as BERT on a vast amount of unlabeled corpus, we find it highly effective and efficient to simply fine-tune BERT with a small set of labeled utterances from public datasets. Specifically, fine-tuning BERT with roughly 1,000 labeled data yields a pre-trained model -- IntentBERT, which can easily surpass the performance of existing pre-trained models for few-shot intent classification on novel domains with very different semantics. The high effectiveness of IntentBERT confirms the feasibility and practicality of few-shot intent detection, and its high generalization ability across different domains suggests that intent classification tasks may share a similar underlying structure, which can be efficiently learned from a small set of labeled data. The source code can be found at https://github.com/hdzhang-code/IntentBERT.
翻译:本文调查了为少见意图分类培训前培训的有效性。 虽然现有的模式通常会进一步推进前培训语言模型,如在大量未加标签的文体上进行培训前培训前语言模型,但我们发现,仅仅通过从公共数据集中贴上标签的一小组话来微调BERT非常有效和高效,具体地说,用大约1,000个标签数据微调BERT产生一个预先培训的模式 -- -- 即IntentBERT, 它很容易超过现有对具有非常不同的语义的新领域进行少发意图分类的预培训模型的性能。 IntentBERT的高度效力证实了对几发意图的探测的可行性和实用性,以及它在不同领域的高度普及能力表明,意图分类任务可能具有类似的基本结构,可以从少量标签数据中有效地学习。源代码见https://github.com/hdzhang-code/IntentBERT。