In this paper, we focus on the classification of books using short descriptive texts (cover blurbs) and additional metadata. Building upon BERT, a deep neural language model, we demonstrate how to combine text representations with metadata and knowledge graph embeddings, which encode author information. Compared to the standard BERT approach we achieve considerably better results for the classification task. For a more coarse-grained classification using eight labels we achieve an F1- score of 87.20, while a detailed classification using 343 labels yields an F1-score of 64.70. We make the source code and trained models of our experiments publicly available
翻译:在本文中,我们的重点是利用简短描述文本(覆盖模糊)和补充元数据对书籍进行分类。在深神经语言模型BERT的基础上,我们展示了如何将文本表述与输入作者信息的元数据和知识图表嵌入结合起来的方法。与标准的BERT方法相比,我们为分类任务取得了显著更好的结果。为了使用8个标签进行更粗化的分类,我们取得了87.20分的F1分,而使用343个标签进行的详细分类得出了64.70分的F1分。我们公布了我们的实验源代码和经过培训的模型。