This paper analyzes the discretization of a Neumann boundary control problem with a stochastic parabolic equation, where an additive noise occurs in the Neumann boundary condition. The convergence is established for general filtrations, and the convergence rate $ O(\tau^{1/4-\epsilon} + h^{3/2-\epsilon}) $ is derived for the natural filtration of the Q-Wiener process. A Monte-Carlo method to solve the discrete stochastic optimal control problem is proposed.
翻译:本文分析了Neumann边界控制问题与Stochortic parbolic 等式的离散化问题, 前者在Neumann边界条件下出现添加噪音。 趋同是为了一般过滤而确定的, 趋同率 O( tau ⁇ 1/4-\epsilon} + h ⁇ 3/2\epsilon} + h ⁇ 3/2\epsilon} 用于Q- Wiier 过程的自然过滤。 提议采用 Monte- Carlo 方法解决离散的最佳控制问题 。