In this paper, we address the trajectory planning problem in uncertain nonconvex static and dynamic environments that contain obstacles with probabilistic location, size, and geometry. To address this problem, we provide a risk bounded trajectory planning method that looks for continuous-time trajectories with guaranteed bounded risk over the planning time horizon. Risk is defined as the probability of collision with uncertain obstacles. Existing approaches to address risk bounded trajectory planning problems either are limited to Gaussian uncertainties and convex obstacles or rely on sampling-based methods that need uncertainty samples and time discretization. To address the risk bounded trajectory planning problem, we leverage the notion of risk contours to transform the risk bounded planning problem into a deterministic optimization problem. Risk contours are the set of all points in the uncertain environment with guaranteed bounded risk. The obtained deterministic optimization is, in general, nonlinear and nonconvex time-varying optimization. We provide convex methods based on sum-of-squares optimization to efficiently solve the obtained nonconvex time-varying optimization problem and obtain the continuous-time risk bounded trajectories without time discretization. The provided approach deals with arbitrary probabilistic uncertainties, nonconvex and nonlinear, static and dynamic obstacles, and is suitable for online trajectory planning problems.


翻译:在本文中,我们处理具有概率性地点、大小和几何特征障碍的不确定的、非阴道静态和动态环境中的轨迹规划问题。为了解决这一问题,我们提供了一种风险约束轨迹规划方法,以寻找在规划时间跨度中具有受保障的受约束风险的连续时间轨迹。风险被定义为与不确定障碍碰撞的概率。现有处理受风险约束的轨迹规划问题的方法要么局限于高斯的不确定性和阴道障碍,要么依赖基于抽样的、需要不确定样本和时间分解的抽样方法。为了解决受风险约束的轨迹规划问题,我们利用风险轮廓概念将风险约束的规划问题转化为确定性优化问题。风险轮廓是不确定环境中所有有受保障的受限轨道组合。获得的确定性优化一般而言,非线性和非对等式轨迹优化。我们提供了基于质量优化的方位方法,以高效解决获得的不互换时间周期优化问题。提供了不连续的、不固定的、不固定的动态的动态的轨迹系风险,提供了不固定的动态的、不固定的轨迹定的动态的线。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年6月30日
专知会员服务
76+阅读 · 2021年3月16日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
已删除
将门创投
8+阅读 · 2019年3月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月4日
Arxiv
0+阅读 · 2021年8月3日
Arxiv
4+阅读 · 2021年4月13日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年6月30日
专知会员服务
76+阅读 · 2021年3月16日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
已删除
将门创投
8+阅读 · 2019年3月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员