A special place in climatology is taken by the so-called conceptual climate models. These, relatively simple, sets of differential equations can successfully describe single mechanisms of the climate. We focus on one family of such models based on the global energy balance. This gives rise to a degenerate nonlocal parabolic nonlinear partial differential equation for the zonally averaged temperature. We construct a fully discrete numerical method that has an optimal spectral accuracy in space and second order in time. Our scheme is based on Galerkin formulation of the Legendre basis expansion which is particularly convenient for this setting. By using extrapolation the numerical scheme is linear even though the original equation is strongly nonlinear. We also test our theoretical result during various numerical simulations that confirm the aforementioned accuracy of the scheme. All implementations are coded in Julia programming language with the use of parallelization (multi-threading).
翻译:所谓的概念气候模型在气候学中占有一个特殊位置。 这些相对简单、各套差异方程式可以成功地描述单一的气候机制。 我们侧重于基于全球能源平衡的一组此类模型。 这导致了一个退化的非本地抛物线非线性非线性局部方程式,用于地区平均温度。 我们构建了一个完全离散的数字方法,该方法在空间中具有最佳的光谱精度,在时间上具有第二顺序。 我们的计划以Galerkin 的图例基础扩展配方为基础,对于这一环境特别方便。 使用外推法, 数字法是线性的, 尽管原始方程式非常非线性。 我们还在各种数字模拟中测试我们的理论结果, 以证实上述计划准确性。 所有执行都由朱丽亚编程语言编码, 并使用平行化( 多线读) 。