Despite significant progress, state-of-the-art abstractive summarization methods are still prone to hallucinate content inconsistent with the source document. In this paper, we propose Constrained Abstractive Summarization (CAS), a general setup that preserves the factual consistency of abstractive summarization by specifying tokens as constraints that must be present in the summary. We adopt lexically constrained decoding, a technique generally applicable to autoregressive generative models, to fulfill CAS and conduct experiments in two scenarios: (1) automatic summarization without human involvement, where keyphrases are extracted from the source document and used as constraints; (2) human-guided interactive summarization, where human feedback in the form of manual constraints are used to guide summary generation. Automatic and human evaluations on two benchmark datasets demonstrate that CAS improves both lexical overlap (ROUGE) and factual consistency of abstractive summarization. In particular, we observe up to 13.8 ROUGE-2 gains when only one manual constraint is used in interactive summarization.


翻译:尽管取得了重大的进展,最先进的抽象总结方法仍然容易产生与原始文件不一致的幻觉。在本文件中,我们提议采用封闭式抽象总结(CAS)这一总体设置,将抽象总结(CAS)的实际一致性保留在摘要中必须列出的限制因素中。我们采用了一种通常适用于自动递减基因模型的具有法律限制的解码技术,以在两种假设中完成化学文摘(CAS)并进行实验:(1) 自动总结而无需人的参与,关键词是从原始文件提取的,并用作限制;(2) 以人工制约的形式对人进行反馈,用于指导摘要制作;对两个基准数据集进行自动和人类评价,表明化学文摘(ROUGE)改进了词汇重叠(ROUGE)和抽象总结(CE)的实际一致性。特别是,当交互式总结只使用一个手工约束时,我们观察到13.8 ROUGE-2的成果。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
深度学习图像检索(CBIR): 十年之大综述
专知会员服务
46+阅读 · 2020年12月5日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
31+阅读 · 2020年9月21日
Question Generation by Transformers
Arxiv
5+阅读 · 2019年9月14日
Arxiv
5+阅读 · 2019年8月22日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员