In the Offline Finding Network(OFN), offline Bluetooth tags broadcast to the surrounding area, the finder devices receiving the broadcast signal and upload location information to the IoT(Internet of Things) cloud servers, thereby achieving offline finding of lost items. This process is essentially a Bluetooth low energy (BLE) neighbor discovery process(NDP). In the process, the variety of Bluetooth scan modes caused by the scan interval and scan window settings affects the discovery latency of finder devices finding the tag broadcast packets. To optimize the experience of searching for lost devices, we propose the CPBIS-mechanism, a certain proportion broadcast-intervals screening mechanism that calculates the most suitable two broadcast intervals and their proportion for offline tags. This reduces discovery latency in the BLE NDP, improves the discovery success rate, further enhances the user experience. To our knowledge, we are the first to propose a comprehensive solution for configuring the broadcast interval parameters of advertisers in BLE NDP, particularly for configurations involving two or more broadcast intervals. We evaluated the results obtained by CPBIS on the nRF52832 chip. The data shows that the CPBIS-mechanism achieves relatively low discovery latencies for multiple scan modes.
翻译:暂无翻译