We study the mean-field Ising spin glass model with external field, where the random symmetric couplings matrix is orthogonally invariant in law. For sufficiently high temperature, we prove that the replica-symmetric prediction is correct for the first-order limit of the free energy. Our analysis is an adaption of a "conditional quenched equals annealed" argument used by Bolthausen to analyze the high-temperature regime of the Sherrington-Kirkpatrick model. We condition on a sigma-field that is generated by the iterates of an Approximate Message Passing algorithm for solving the TAP equations in this model, whose rigorous state evolution was recently established.
翻译:我们用外部外野研究平均场是旋转玻璃模型, 随机对称组合矩阵在法律上是任意的。 对于足够高的温度, 我们证明复制的对称预测对自由能量的第一阶限制是正确的。 我们的分析是对Bolthausen用来分析Sherrington- Kirkpatrick模型高温机制的“ 有条件的解冻等同的麻醉” 参数的调整。 我们的条件是一个由类似信息传输算法的循环产生的西格玛场, 用于解决这个模型中的TAP方程式, 最近确定了该模型的严格状态演化 。