We study the problem of recovering an unknown signal $\boldsymbol x$ given measurements obtained from a generalized linear model with a Gaussian sensing matrix. Two popular solutions are based on a linear estimator $\hat{\boldsymbol x}^{\rm L}$ and a spectral estimator $\hat{\boldsymbol x}^{\rm s}$. The former is a data-dependent linear combination of the columns of the measurement matrix, and its analysis is quite simple. The latter is the principal eigenvector of a data-dependent matrix, and a recent line of work has studied its performance. In this paper, we show how to optimally combine $\hat{\boldsymbol x}^{\rm L}$ and $\hat{\boldsymbol x}^{\rm s}$. At the heart of our analysis is the exact characterization of the joint empirical distribution of $(\boldsymbol x, \hat{\boldsymbol x}^{\rm L}, \hat{\boldsymbol x}^{\rm s})$ in the high-dimensional limit. This allows us to compute the Bayes-optimal combination of $\hat{\boldsymbol x}^{\rm L}$ and $\hat{\boldsymbol x}^{\rm s}$, given the limiting distribution of the signal $\boldsymbol x$. When the distribution of the signal is Gaussian, then the Bayes-optimal combination has the form $\theta\hat{\boldsymbol x}^{\rm L}+\hat{\boldsymbol x}^{\rm s}$ and we derive the optimal combination coefficient. In order to establish the limiting distribution of $(\boldsymbol x, \hat{\boldsymbol x}^{\rm L}, \hat{\boldsymbol x}^{\rm s})$, we design and analyze an Approximate Message Passing (AMP) algorithm whose iterates give $\hat{\boldsymbol x}^{\rm L}$ and approach $\hat{\boldsymbol x}^{\rm s}$. Numerical simulations demonstrate the improvement of the proposed combination with respect to the two methods considered separately.


翻译:我们研究如何恢复一个未知的信号 $\ boldsylmbol x$ 的测量问题。 前者是来自一个通用的线性模型, 并配以一个高斯元的xx$ 。 两种流行的解决方案基于一个线性估算器 $\ hhat_ boldsymbol x ⁇ rm L} $ 和一个光谱估算器 $\hat_ boldsymball xborsball xrmall xrm; 我们分析的核心是对测量矩阵各列的数据依赖线性组合的描述。 后者是数据依赖的基质模型, 最近的工作已经研究了它的性能。 在本文件中, 我们如何优化 $\ boldsylsylum_ brcmluslational 的方法 和 美元的基质价的基价的基价价的基 ====xxxxxxml=br=xxxxxml=xxxxxxxl= maxxxxxxxxxxlxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年8月26日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员