We study memoryless interference channels with gradual data arrival in the absence of feedback. The information bits arrive at the transmitters according to independent and asynchronous~(Tx-Tx asynchrony) Bernoulli processes with average data rate $\lambda$. Each information source turns off after generating a number of $n$ bits. In a scenario where the transmitters are unaware of the amount of Tx-Tx asynchrony, we say $\epsilon$ is an \textit{achievable outage level} in the asymptote of large~$n$ if (i) the average transmission rate at each transmitter is $\lambda$ and (ii) the probability that the bit-error-rate at each receiver does not eventually vanish is not larger than~$\epsilon$. Denoting the infimum of all achievable outage levels by $\epsilon(\lambda)$, the contribution of this paper is an upper bound (achievability result) on $\epsilon(\lambda)$. The proposed method of communication is a simple block transmission scheme where a transmitter sends a random point-to-point codeword upon availability of enough bits in its buffer. Both receivers that treat interference as noise or decode interference are addressed.
翻译:在没有反馈的情况下,我们用逐渐到达的数据来研究没有记忆的干扰渠道。 信息比特根据独立和不同步的~ (Tx- Tx asynchrony) Bernoulli 进程以平均数据速率 $\ lambda$ 来到达发报机。 每个信息来源在生成数美元比特后关闭。 如果发报机不知道Tx- Tx 亚同步度的数值, 我们假设发报机不知道Tx- Tx 亚同步度的数值, $epsilon( lambda) 值是 $\ textitipit{ / 实际出价 }, 如果 (一) 每个发报报机的平均传输率为$\ lambda$ 和 (二) 每个接收机的比特- ror 速率最终不会消失的概率不大于 ~ $\ 美元 。 发报报机的最小值是 $epsilon( lambda), 这纸的贡献是一个上限(可实现结果), $ Expeopleal detration commissional resmissional sal sal sal sal sal sal sal schemissionalpalprelationalprelations prelation.