Mean-based reconstruction is a fundamental, natural approach to worst-case trace reconstruction over channels with synchronization errors. It is known that $\exp(O(n^{1/3}))$ traces are necessary and sufficient for mean-based worst-case trace reconstruction over the deletion channel, and this result was also extended to certain channels combining deletions and geometric insertions of uniformly random bits. In this work, we use a simple extension of the original complex-analytic approach to show that these results are examples of a much more general phenomenon. We introduce oblivious synchronization channels, which map each input bit to an arbitrarily distributed sequence of replications and insertions of random bits. This general class captures all previously considered synchronization channels. We show that for any oblivious synchronization channel whose output length follows a sub-exponential distribution either mean-based trace reconstruction is impossible or $\exp(O(n^{1/3}))$ traces suffice for this task.
翻译:基于平均值的重建是针对同步错误的频道进行最坏情况追踪重建的一种基本、自然的方法。已知美元(O(n ⁇ 1/3})的痕迹对于在删除频道上进行基于平均值的最坏情况追踪重建是必要的,而且足够在删除频道上进行基于平均值的最坏情况追踪重建,而且这一结果还扩大到某些将删除和统一随机位数的几何插入结合起来的渠道。在这项工作中,我们使用原始的复杂分析方法简单扩展,以表明这些结果是一个更普遍现象的例子。我们引入了模糊的同步频道,将每个输入点绘制到任意分布的复制和插入随机位的序列中。这个普通类捕捉到所有以前视为同步的频道。我们显示,对于任何在次损耗分配后输出长度的模糊同步频道来说,不可能进行基于平均跟踪重建,或者用$(O(n ⁇ 1/3)美元)的痕迹足以完成这项任务。