We study the enumerative and analytic properties of some sequences constructed using tensor invariant theory. The octant sequences are constructed from the exceptional Lie group $G_2$ and the quadrant sequences from the special linear group $SL(3)$. In each case we show that the corresponding sequences are related by binomial transforms. The first three octant sequences and the first four quadrant sequences are listed in the On-Line Encyclopedia of Integer Sequences (OEIS). These sequences all have interpretations as enumerating two-dimensional lattice walks but for the octant sequences the boundary conditions are unconventional. These sequences are all P-recursive and we give the corresponding recurrence relations. In all cases the associated differential operators are of third order and have the remarkable property that they can be solved to give closed formulae for the ordinary generating functions in terms of classical Gaussian hypergeometric functions. Moreover, we show that the octant sequences and the quadrant sequences are related by the branching rules for the inclusion of $SL(3)$ in $G_2$.


翻译:我们用微变数理论来研究某些序列的点数和分析特性。 八进制序列是从特殊线性组 $G_2$和从特殊线性组 $SL(3)$的方位序列构建的。 在每种情况下,我们都显示相应的序列是二进制变换相关联的。前三个八进制序列和前四个方位序列都列在 " 内线百科全书 " (OEIs)中。这些序列都有用于计算二维阵列行的诠释,但对于八进制序列来说,边界条件是非常规的。这些序列都是P-recurive性的,我们给出相应的重复关系。在所有情况下,相关的差异操作员都是第三顺序,并具有它们可以解答的显著属性,为古典高斯超几何函数的普通生成函数提供封闭式公式。此外,我们显示,八进式序列和方位序列都与美元3$的分支规则有关,以美元计为$_G$。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
71+阅读 · 2021年12月8日
专知会员服务
50+阅读 · 2021年6月30日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
57+阅读 · 2019年11月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
8+阅读 · 2021年2月19日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
71+阅读 · 2021年12月8日
专知会员服务
50+阅读 · 2021年6月30日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
57+阅读 · 2019年11月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员