For a given linear algebra problem, we consider those solution algorithms that are mathematically equivalent to one another, and that mostly consist of a sequence of calls to kernels from optimized libraries such as BLAS and LAPACK. Although equivalent (at least in exact precision), those algorithms typically exhibit significant differences in terms of performance, and naturally, we are interested in finding the fastest one(s). In practice, we often observe that multiple algorithms yield comparable performance characteristics. Therefore, we aim to identify the subset of algorithms that are reliably faster than the rest. To this end, instead of quantifying the performance of an algorithm in absolute terms, we present a measurement-based approach that assigns a relative score to the algorithms in comparison to one another. The relative performance is encoded by sorting the algorithms based on pair-wise comparisons and ranking them into equivalence classes, where more than one algorithm can obtain the same rank. We show that the relative performance leads to robust identification of the fastest algorithms, that is, reliable identifications even with noisy system conditions


翻译:对于给定的线性代数问题,我们考虑的是那些在数学上彼此等同的解算法,这些解算法大多由BLAS和LAPACK等优化图书馆的内核呼叫序列组成。尽管这些算法相当(至少精确),但这些算法通常在性能方面差异很大,而且自然,我们感兴趣的是找到最快的。在实践中,我们常常发现多种算法产生类似的性能特征。因此,我们的目标是确定可靠比其他算法更快的算法子子子组。为此,我们不是用绝对值量化算法的性能,而是提出一种基于测量的方法,给算法分配相对的分数,相对性能通过对双向比较进行算法排序并将其排到等同类,在类中不止一种算法可以取得相同的等级。我们表明,相对性能导致对最快的算法的精确识别,也就是说,即使有响亮的系统条件,也能够可靠地识别。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
90+阅读 · 2020年10月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
MIT线性代数(Linear Algebra)中文笔记
专知
51+阅读 · 2019年11月4日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
LibRec 每周算法:Collaborative Metric Learning (WWW'17)
LibRec智能推荐
6+阅读 · 2017年7月4日
Arxiv
0+阅读 · 2020年11月30日
Arxiv
0+阅读 · 2020年11月30日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
90+阅读 · 2020年10月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
MIT线性代数(Linear Algebra)中文笔记
专知
51+阅读 · 2019年11月4日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
LibRec 每周算法:Collaborative Metric Learning (WWW'17)
LibRec智能推荐
6+阅读 · 2017年7月4日
Top
微信扫码咨询专知VIP会员