This paper studies the problem of injecting factual knowledge into large pre-trained language models. We train adapter modules on parts of the ConceptNet knowledge graph using the masked language modeling objective and evaluate the success of the method by a series of probing experiments on the LAMA probe. Mean P@K curves for different configurations indicate that the technique is effective, increasing the performance on subsets of the LAMA probe for large values of k by adding as little as 2.1% additional parameters to the original models.
翻译:本文研究将事实知识注入经过培训的大型语言模型的问题。我们使用隐蔽语言模型目标,对概念网知识图部分内容的适应器模块进行培训,并通过在LAMA探测器上进行一系列探测实验,评估该方法的成功程度。 不同配置的P@K曲线显示,该技术是有效的,提高了LAMA探测器子集在KK大数值上的性能,在原始模型中只增加了2.1%的附加参数。