For the evolution of a closed surface under anisotropic surface diffusion with a general anisotropic surface energy $\gamma(\boldsymbol{n})$ in three dimensions (3D), where $\boldsymbol{n}$ is the unit outward normal vector, by introducing a novel symmetric positive definite surface energy matrix $\boldsymbol{Z}_k(\boldsymbol{n})$ depending on a stabilizing function $k(\boldsymbol{n})$ and the Cahn-Hoffman $\boldsymbol{\xi}$-vector, we present a new symmetrized variational formulation for anisotropic surface diffusion with weakly or strongly anisotropic surface energy, which preserves two important structures including volume conservation and energy dissipation. Then we propose a structural-preserving parametric finite element method (SP-PFEM) to discretize the symmetrized variational problem, which preserves the volume in the discretized level. Under a relatively mild and simple condition on $\gamma(\boldsymbol{n})$, we show that SP-PFEM is unconditionally energy-stable for almost all anisotropic surface energies $\gamma(\boldsymbol{n})$ arising in practical applications. Extensive numerical results are reported to demonstrate the efficiency and accuracy as well as energy dissipation of the proposed SP-PFEM for solving anisotropic surface diffusion in 3D.


翻译:对于在厌食性表面扩散下的封闭表面的演化,其变化取决于稳定功能$k(\boldsymbol{n})$和Cahn-Hoffman$\boldsyombol=xix}美元三种维度(3D),其中$\boldsymbol{n}是单位向外正常矢量的单位,为此,我们采用了一种新的对称性确定表面表面能量矩阵($\boldsymol{k}k(\boldsymbol{n}}),取决于稳定功能$k(\boldsysymbol{n}美元和Cahn-Hoffman$\boldsySymall=xxxxxxxxxxxxxxxxxxx维度,我们展示了一种新的对厌食性表面表面表面能量扩散的配方的配方,这种配方保存了两种重要的结构,包括量节能和能量消耗。然后,我们提议一种结构-保留参数定的定度定的定度定度的定质的调度的调度变差度方法(SPm),这保存了离离差值的值水平的调度水平的值水平,在离差分度水平的值的基质化值的基质度的基质度水平的分解度的分解水平的精确度,在3美元的流度应用下,在质的基质的流化度上,在质的流度上显示的基质的基质的基质的基质的流化结果下,在基质的基质的基质的表面的能量的基质的基质的能量的流的流结果中, 正在的流的流的流化的流化的流化的流值中, 正在演化结果的基的基的基的流的流结果下,在基质的基中,在基质的流化的流化的流化的流化的流化的流化的流化的流化的流化的流值中,在质的流的基的基的流的基的基的流化的流化的流化的流化的流化的流化的流化的流化的流化

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Optimal precision for GANs
Arxiv
0+阅读 · 2022年7月21日
Arxiv
0+阅读 · 2022年7月21日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员