We consider power means of independent and identically distributed (i.i.d.) non-integrable random variables. The power mean is a homogeneous quasi-arithmetic mean, and under some conditions, several limit theorems hold for the power mean as well as for the arithmetic mean of i.i.d. integrable random variables. We establish integrabilities and a limit theorem for the variances of the power mean of i.i.d. non-integrable random variables. We also consider behaviors of the power mean when the parameter of the power varies. Our feature is that the generator of the power mean is allowed to be complex-valued, which enables us to consider the power mean of random variables supported on the whole set of real numbers. The complex-valued power mean is an unbiased strongly-consistent estimator for the joint of the location and scale parameters of the Cauchy distribution.
翻译:我们考虑的是独立和同样分布的(i.d.d.)非可识别性随机变量的动力手段。 电力平均值是一种单一的准振动平均值, 在某些条件下, 有几个限制的理论对权力平均值和可识别性随机变量的算术平均值都具有一定的说服力。 我们为i.d.非可识别性随机变量的能量值差异设定了不相称性和限值。 我们还考虑了当电力参数变化时, 权力平均值的行为。 我们的特征是,允许对电力平均值的生成者进行复杂的估价, 从而使我们能够考虑整个真实数字组所支持的随机变量的动力平均值。 复杂估价的能量意味着对Cauchy分布的位置和比例参数的组合进行不偏袒性的强烈估计。