In this paper we consider the problem of sampling from the low-temperature exponential random graph model (ERGM). The usual approach is via Markov chain Monte Carlo, but Bhamidi et al. showed that any local Markov chain suffers from an exponentially large mixing time due to metastable states. We instead consider metastable mixing, a notion of approximate mixing relative to the stationary distribution, for which it turns out to suffice to mix only within a collection of metastable states. We show that the Glauber dynamics for the ERGM at any temperature -- except at a lower-dimensional critical set of parameters -- when initialized at $G(n,p)$ for the right choice of $p$ has a metastable mixing time of $O(n^2\log n)$ to within total variation distance $\exp(-\Omega(n))$.
翻译:在本文中,我们考虑的是低温指数随机图模型(ERGM)的取样问题。通常的做法是通过Markov链Monte Carlo,但Bhamidi等人指出,任何本地的Markov链由于元化状态而具有指数性大混合时间。我们相反认为,与固定分布相比,混合是一种可变概念,即混合的近似值,因此,它仅足以在元化状态的集合中混合。我们表明,除低维临界参数组外,在任何温度下方,ERGM的Glauber动态,在以$(n,p)开始以美元作为正确选择美元时,如果以$(n,p)开始,则以$(n)为单位,则其混合时间为美元(n%2\log n)至总变异差距离$(-Omega(n)美元)内。