Exploring the most task-friendly camera setting -- optimal camera placement (OCP) problem -- in tasks that use multiple cameras is of great importance. However, few existing OCP solutions specialize in depth observation of indoor scenes, and most versatile solutions work offline. To this problem, an OCP online solution to depth observation of indoor scenes based on reinforcement learning is proposed in this paper. The proposed solution comprises a simulation environment that implements scene observation and reward estimation using shadow maps and an agent network containing a soft actor-critic (SAC)-based reinforcement learning backbone and a feature extractor to extract features from the observed point cloud layer-by-layer. Comparative experiments with two state-of-the-art optimization-based offline methods are conducted. The experimental results indicate that the proposed system outperforms seven out of ten test scenes in obtaining lower depth observation error. The total error in all test scenes is also less than 90% of the baseline ones. Therefore, the proposed system is more competent for depth camera placement in scenarios where there is no prior knowledge of the scenes or where a lower depth observation error is the main objective.
翻译:在使用多个相机的任务中,探索最有利于任务的相机设置 -- -- 最佳相机放置(OCP)问题 -- -- 非常重要。然而,现有的OCP解决方案很少专门深入观察室内场景,而且大多数多功能解决方案是离线的。对于这一问题,本文件提出了基于强化学习的对室内场景进行深度观测的OCP在线解决方案。拟议解决方案包括模拟环境,利用影子地图进行现场观察和奖励估计,以及包含软性行为者-批评者(SAC)强化学习主干线和特征提取器的代理网络,以从观测到的点云层逐层中提取特征。进行了两种最先进的优化离线方法的比较实验。实验结果表明,拟议的系统比10个测试场中的7个要强,以获得更低深度的观察错误。所有测试场的总误差也不到基线的90%。因此,拟议的系统更有能力在对场景没有事先了解或主要目的为低深度观测错误的场景进行深度摄像。