We compare two approaches to photoacoustic image reconstruction from compressed/subsampled photoacoustic data based on assumption of sparsity in the Curvelet frame: DR, a two step approach based on the recovery of the complete volume of the photoacoustic data from the subsampled data followed by the acoustic inversion, and p0R, a one step approach where the photoacoustic image (the initial pressure, p0) is directly recovered from the subsampled data. For representation of the photoacoustic data, we propose a modification of the Curvelet transform corresponding to the restriction to the range of the photoacoustic forward operator. Both recovery problems are formulated in a variational framework. As the Curvelet frame is heavily overdetermined, we use reweighted l1 norm penalties to enhance the sparsity of the solution. The data reconstruction problem DR is a standard compressed sensing recovery problem, which we solve using an ADMM-type algorithm, SALSA. Subsequently, the initial pressure is recovered using time reversal as implemented in the k-Wave Toolbox. The p0 reconstruction problem, p0R, aims to recover the photoacoustic image directly via FISTA, or ADMM when in addition including a non-negativity constraint. We compare and discuss the relative merits of the two approaches and illustrate them on 2D simulated and 3D real data.


翻译:我们比较了基于Curvelet框架宽度假设的光声图像重建的两种方法:DR,这是基于从子抽样数据中恢复光声图像完整量的两步方法,其次为声学反转,然后是P0R,这是一个步骤方法,其次为光声图像(初始压力,p0)直接从子抽样数据中恢复过来。关于光声数据的表现,我们建议修改Curvelet的转换与光声学前导操作器范围的限制相对应。两种恢复问题都是在变异框架内拟订的。由于Curvelet框架太过分,我们使用重新加权的l1标准惩罚来提高解决方案的宽度。数据重建问题是一个标准的压缩感测恢复问题,我们用ADMM-型算法SALSA来解决。随后,我们用在 kWive 工具箱中实施的时间逆转来恢复初始压力。我们用P0 重建的PORA(包括FMA) 的相对性分析,目的是通过两个图像来恢复真实性分析,我们用FIA 3 的相对性分析,目的是要恢复真实性分析。

0
下载
关闭预览

相关内容

【AAAI2021】 层次图胶囊网络
专知会员服务
83+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】OFF:快速鲁棒视频动作识别的运动表征
泡泡机器人SLAM
3+阅读 · 2019年3月12日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
3D Face Modeling from Diverse Raw Scan Data
Arxiv
5+阅读 · 2019年2月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】OFF:快速鲁棒视频动作识别的运动表征
泡泡机器人SLAM
3+阅读 · 2019年3月12日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员