Available evidence suggests that dynamic functional connectivity (dFC) can capture time-varying abnormalities in brain activity in rs-fMRI data and has a natural advantage in uncovering mechanisms of abnormal brain activity in schizophrenia(SZ) patients. Hence, an advanced dynamic brain network analysis model called the temporal brain category graph convolutional network (temporal-BCGCN) was employed. Firstly, a unique dynamic brain network analysis module, DSF-BrainNet, was designed to construct dynamic synchronization features. Subsequently, a revolutionary graph convolution method, TemporalConv, was proposed, based on the synchronous temporal properties of feature. Finally, the first modular abnormal hemispherical lateralization test tool in deep learning based on rs-fMRI data, named CategoryPool, was proposed. This study was validated on COBRE and UCLA datasets and achieved 83.62% and 89.71% average accuracy, respectively, outperforming the baseline model and other State-of-the-Art methods. The ablation results also demonstrate the advantages of TemporalConv over the traditional edge feature convolution approach of graph convolutional neural network (GCN) and the improvement of CategoryPool over the classical graph pooling approach. Interestingly, this study showed that the lower order perceptual system and higher order network regions in the left hemisphere are more severely dysfunctional than in the right hemisphere of SZ, and reaffirms the importance of the left medial superior frontal gyrus in SZ. Our core code is available at: https://github.com/swfen/Temporal-BCGCN.
翻译:Translated abstract: 现有证据表明,动态功能连通性(dFC)可以捕捉rs-fMRI数据中脑活动的时变性异常,并在揭示精神分裂症(SZ)患者异常脑活动机制方面具有自然优势。因此,本研究采用了一种先进的动态脑网络分析模型,称为时间脑类型图卷积网络(temporal-BCGCN)。首先,设计了一种独特的动态脑网络分析模块——DSF-BrainNet,用于构建动态同步特征。随后,基于特征的同步时间性质,提出了一种革命性的图卷积方法——TemporalConv。最后,本研究提出了一种基于rs-fMRI数据的深度学习模块化异常半球侧化检测工具,名为CategoryPool。该研究在COBRE和UCLA数据集上进行验证,分别实现了83.62%和89.71%的平均准确率,优于基线模型和其他最先进的方法。消融结果还证明了TemporalConv相较于图卷积神经网络(GCN)的传统边特征卷积方法的优势,以及CategoryPool相较于经典图池化方法的改进。有趣的是,本研究显示SZ患者左半球的较低级感知系统和高级网络区域比右半球更为异常,并再次验证了左中上额回在SZ中的重要性。我们的核心代码可在https://github.com/swfen/Temporal-BCGCN获取。