This paper considers nonlinear dynamic models where the main parameter of interest is a nonnegative matrix characterizing the network (contagion) effects. This network matrix is usually constrained either by assuming a limited number of nonzero elements (sparsity), or by considering a reduced rank approach for nonnegative matrix factorization (NMF). We follow the latter approach and develop a new probabilistic NMF method. We introduce a new Identifying Maximum Likelihood (IML) method for consistent estimation of the identified set of admissible NMF's and derive its asymptotic distribution. Moreover, we propose a maximum likelihood estimator of the parameter matrix for a given non-negative rank, derive its asymptotic distribution and the associated efficiency bound.
翻译:本文考虑了非线性动态模型,其中,主要利益参数是网络(碰撞)效应的非负矩阵。这一网络矩阵通常受到限制,要么假设数量有限的非零元素(平衡),要么考虑非负矩阵因子化(NMF)的降级方法。我们遵循后一种方法,并开发一种新的概率NMF方法。我们采用了一种新的识别最大相似性(IML)方法,以一致估计已确认的可受理NMF的一组最大相似性,并得出其无症状分布。此外,我们提议对某一非负级的参数矩阵进行最大可能性估计,得出其无症状分布和相关的效率约束。