The lack of reliable biomarkers makes predicting the conversion from intermediate to neovascular age-related macular degeneration (iAMD, nAMD) a challenging task. We develop a Deep Learning (DL) model to predict the future risk of conversion of an eye from iAMD to nAMD from its current OCT scan. Although eye clinics generate vast amounts of longitudinal OCT scans to monitor AMD progression, only a small subset can be manually labeled for supervised DL. To address this issue, we propose Morph-SSL, a novel Self-supervised Learning (SSL) method for longitudinal data. It uses pairs of unlabelled OCT scans from different visits and involves morphing the scan from the previous visit to the next. The Decoder predicts the transformation for morphing and ensures a smooth feature manifold that can generate intermediate scans between visits through linear interpolation. Next, the Morph-SSL trained features are input to a Classifier which is trained in a supervised manner to model the cumulative probability distribution of the time to conversion with a sigmoidal function. Morph-SSL was trained on unlabelled scans of 399 eyes (3570 visits). The Classifier was evaluated with a five-fold cross-validation on 2418 scans from 343 eyes with clinical labels of the conversion date. The Morph-SSL features achieved an AUC of 0.766 in predicting the conversion to nAMD within the next 6 months, outperforming the same network when trained end-to-end from scratch or pre-trained with popular SSL methods. Automated prediction of the future risk of nAMD onset can enable timely treatment and individualized AMD management.


翻译:缺乏可靠的生物标志物使得预测中度老年性黄斑变性(iAMD,nAMD)从眼部的转化成为难题。我们开发了一个深度学习(DL)模型,用于预测一只眼从其当前的OCT扫描器转化为iAMD到nAMD的未来风险。尽管眼科诊所产生了大量的纵向OCT扫描器以监测AMD的进展,但只有一小部分可以手动标记用于监督学习。为解决这个问题,我们提出了Morph-SSL,一种用于纵向数据的新型自监督学习(SSL)方法。它使用从不同访问中的一对未标记的OCT扫描器,并涉及将上一次访问的扫描器转换为下一次访问的扫描器。解码器预测形变的转换,并保证光滑的特征流形,可以通过线性插值生成访问之间的中间扫描。接下来,Morph-SSL训练的特征被输入到分类器中,该分类器以监督的方式训练模型时间累积概率分布与Sigmoidea函数的转换日期。Morph-SSL使用399只眼睛(3570次访问)的未标记扫描器进行了训练。分类器在包含343只眼睛的2418个扫描器的五倍交叉验证中进行了评估,并带有转换日期的临床标签,Morph-SSL特征在预测未来nAMD发病风险时实现了0.766的AUC,优于同一网络在从头开始进行训练或预先使用流行的SSL方法进行预训练时的结果。自动预测未来nAMD发生的风险可以实现及时的治疗和个体化的AMD管理。

0
下载
关闭预览

相关内容

【CVPR2022】多视图聚合的大规模三维语义分割
专知会员服务
20+阅读 · 2022年4月20日
专知会员服务
63+阅读 · 2021年4月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
用PyTorch做物体检测和追踪
AI研习社
12+阅读 · 2019年1月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月1日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
19+阅读 · 2018年3月28日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员