We propose a flexible dual functional factor model for modelling high-dimensional functional time series. In this model, a high-dimensional fully functional factor parametrisation is imposed on the observed functional processes, whereas a low-dimensional version (via series approximation) is assumed for the latent functional factors. We extend the classic principal component analysis technique for the estimation of a low-rank structure to the estimation of a large covariance matrix of random functions that satisfies a notion of (approximate) functional "low-rank plus sparse" structure; and generalise the matrix shrinkage method to functional shrinkage in order to estimate the sparse structure of functional idiosyncratic components. Under appropriate regularity conditions, we derive the large sample theory of the developed estimators, including the consistency of the estimated factors and functional factor loadings and the convergence rates of the estimated matrices of covariance functions measured by various (functional) matrix norms. Consistent selection of the number of factors and a data-driven rule to choose the shrinkage parameter are discussed. Simulation and empirical studies are provided to demonstrate the finite-sample performance of the developed model and estimation methodology.
翻译:暂无翻译