Explaining the decisions of black-box models has been a central theme in the study of trustworthy ML. Numerous measures have been proposed in the literature; however, none of them have been able to adopt a provably causal take on explainability. Building upon Halpern and Pearl's formal definition of a causal explanation, we derive an analogous set of axioms for the classification setting, and use them to derive three explanation measures. Our first measure is a natural adaptation of Chockler and Halpern's notion of causal responsibility, whereas the other two correspond to existing game-theoretic influence measures. We present an axiomatic treatment for our proposed indices, showing that they can be uniquely characterized by a set of desirable properties. We compliment this with computational analysis, providing probabilistic approximation schemes for all of our proposed measures. Thus, our work is the first to formally bridge the gap between model explanations, game-theoretic influence, and causal analysis.


翻译:解释黑箱模型的决定一直是研究值得信赖的 ML 的核心主题。 文献中已经提出了许多措施; 但是,它们都没有能够就解释性采取可以想象的因果关系。 根据Halpern和Pearl对因果关系解释的正式定义,我们为分类设置得出一套相似的轴心,并用它们来得出三种解释性措施。 我们的第一个措施是对Chockler和Halpern的因果关系概念进行自然调整,而另外两个措施则与现有的游戏理论影响措施相对应。 我们对拟议的指数提出一种不言而喻的处理办法,表明它们具有一套理想特性的独特性。我们用计算分析来补充这一点,为我们所有拟议措施提供概率近似计划。因此,我们的工作是首先正式弥合模型解释、游戏理论影响和因果关系分析之间的差距。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
23+阅读 · 2018年8月3日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员