We consider the task of counterfactual estimation from observational imaging data given a known causal structure. In particular, quantifying the causal effect of interventions for high-dimensional data with neural networks remains an open challenge. Herein we propose Diff-SCM, a deep structural causal model that builds on recent advances of generative energy-based models. In our setting, inference is performed by iteratively sampling gradients of the marginal and conditional distributions entailed by the causal model. Counterfactual estimation is achieved by firstly inferring latent variables with deterministic forward diffusion, then intervening on a reverse diffusion process using the gradients of an anti-causal predictor w.r.t the input. Furthermore, we propose a metric for evaluating the generated counterfactuals. We find that Diff-SCM produces more realistic and minimal counterfactuals than baselines on MNIST data and can also be applied to ImageNet data. Code is available https://github.com/vios-s/Diff-SCM.
翻译:我们认为,根据已知的因果关系结构,从观测成像数据中得出反事实估计任务。特别是,将神经网络中高维数据干预措施的因果关系量化仍然是一个公开的挑战。我们在此提议Diff-SCM,这是建立在基因化能源模型最新进展基础上的深层次结构性因果模型。在我们的情况下,根据因果模型产生的边际和有条件分布的迭代抽样梯度进行推论。反事实估计首先通过确定性前向扩散的方式推断潜在变量,然后用抗癌预测器的梯度对反向扩散进程进行干预。此外,我们提出了评估产生的反事实的衡量标准。我们发现,Diff-SCM产生比MNIST数据基线更现实和最小的反事实,也可以用于图像网络数据。代码https://github.com/vios-s/Diff-SCM可用https://github.com/vios-s/Diff-SCM。