Executing machine learning inference tasks on resource-constrained edge devices requires careful hardware-software co-design optimizations. Recent examples have shown how transformer-based deep neural network models such as ALBERT can be used to enable the execution of natural language processing (NLP) inference on mobile systems-on-chip housing custom hardware accelerators. However, while these existing solutions are effective in alleviating the latency, energy, and area costs of running single NLP tasks, achieving multi-task inference requires running computations over multiple variants of the model parameters, which are tailored to each of the targeted tasks. This approach leads to either prohibitive on-chip memory requirements or paying the cost of off-chip memory access. This paper proposes adapter-ALBERT, an efficient model optimization for maximal data reuse across different tasks. The proposed model's performance and robustness to data compression methods are evaluated across several language tasks from the GLUE benchmark. Additionally, we demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator to extrapolate performance, power, and area improvements over the execution of a traditional ALBERT model on the same hardware platform.


翻译:执行机器学习推理任务需要在资源受限的边缘设备上进行仔细的硬件-软件协同设计优化。最近的例子表明,诸如ALBERT之类的基于Transformer的深度神经网络模型可以用于在承载定制硬件加速器的移动系统芯片上实现自然语言处理(NLP)推理的执行。然而,虽然这些现有的解决方案在减轻单个NLP任务的延迟、能耗和面积成本方面非常有效,但实现多任务推理需要在适合每个目标任务的多个变量的模型参数上运行计算。这种方法会导致要么禁止在芯片上的内存要求,要么要支付离线内存访问的成本。本文提出了adapter-ALBERT,这是一种用于在不同任务之间实现最大数据重用的有效模型优化。评估了所提出的模型在GLUE基准测试的几个语言任务中的性能和对数据压缩方法的鲁棒性。此外,我们展示了将模型映射到异构芯片上的内存体系结构优势,通过对已验证的NLP边缘加速器进行模拟,从而推断出在相同硬件平台上执行传统ALBERT模型的性能、功率和面积改进。

0
下载
关闭预览

相关内容

BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员