Garment representation, animation and editing is a challenging topic in the area of computer vision and graphics. Existing methods cannot perform smooth and reasonable garment transition under different shape styles and topologies. In this work, we introduce a novel method, termed as DeepCloth, to establish a unified garment representation framework enabling free and smooth garment style transition. Our key idea is to represent garment geometry by a "UV-position map with mask", which potentially allows the description of various garments with different shapes and topologies. Furthermore, we learn a continuous feature space mapped from the above UV space, enabling garment shape editing and transition by controlling the garment features. Finally, we demonstrate applications of garment animation, reconstruction and editing based on our neural garment representation and encoding method. To conclude, with the proposed DeepCloth, we move a step forward on establishing a more flexible and general 3D garment digitization framework. Experiments demonstrate that our method can achieve the state-of-the-art garment modeling results compared with the previous methods.


翻译:色调、动画和编辑是计算机视觉和图形领域一个具有挑战性的主题。 现有方法无法在不同形状样式和地形下顺利、合理的服装转换。 在这项工作中,我们引入了一种叫“深色”的新颖方法,以建立一个统一的服装代表框架,允许自由、顺利的服装风格过渡。 我们的关键想法是用“ 面罩的UV位置地图”来代表服装几何, 这可能允许描述不同形状和地形的各种服装。 此外, 我们学习了从上述紫外线空间绘制的连续特征空间, 能够通过控制服装特征进行服装形状编辑和转换。 最后, 我们展示了基于我们神经服装描述和编码方法的服装动画、 重建和编辑应用。 最后,我们与提议的深色线一道, 向前迈进一步, 建立一个更灵活和通用的 3D 服装数字化框架。 实验表明, 我们的方法可以实现与以往方法相比最先进的服装模型结果。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员